The generator matrix

 1  0  0  1  1  1  1  1  1 2X^2  1  1 2X^2+X  1  1  1  1  1  1 2X 2X^2+2X  1  1  1  1 X^2+2X X^2+X  1  X X^2  1  0  1
 0  1  0 2X^2  1 2X^2+1 2X^2+2  X  2  1 2X^2+2X+1 2X^2+2X+2  1 X^2 X^2+X X^2+1 X^2+2X+1 2X^2+2X+2 2X^2  1  1 X+2 X^2+2X+2 2X^2+X 2X^2+X+2  1  1 2X^2+2X+1 2X  1 2X^2+1  X X^2+X
 0  0  1 2X^2+2X+1 2X+1 2X^2 X^2+X+2 X+2 X^2+2X 2X^2+1 2X^2+2X+2 2X^2+1 2X^2+2 X^2+X 2X^2+2 X^2+1 X^2+2 X+1 X^2+X+1 X^2+1 2X+2 2X^2+X X^2+2X+2  0 2X^2+2X+2 2X^2+X 2X+1 X^2  1 X^2+2X X+2  1 X^2+1

generates a code of length 33 over Z3[X]/(X^3) who�s minimum homogenous weight is 61.

Homogenous weight enumerator: w(x)=1x^0+870x^61+1404x^62+1242x^63+2706x^64+2472x^65+1966x^66+3480x^67+1938x^68+1236x^69+1488x^70+810x^71+2x^72+30x^73+12x^74+8x^75+12x^76+6x^77

The gray image is a linear code over GF(3) with n=297, k=9 and d=183.
This code was found by Heurico 1.16 in 0.454 seconds.